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Abstract 

Linearized equations are set up to describe tmnsverse waves in a rela- 

tivistic plasma embedded in a magnetic field and in the presence of a non-relativistic 

plasma. The waves are taken to propagate at right angles to the unperturbed field. 

Unstable waves are found to exist when the momentum distribution i s  taken to be of  

the cosmic my type, but anisotropic. The instability exists only when relativistic 

particles are present and i s  a consequence of the mass of a fast particle being dif- 

ferent from i ts  rest mass. 
/ 

The maximum amplification rate i s  found for this case and i s  illustrated 

numerica l y  by assuming physical values appropriate to the case of galactic cosmic 

ray elect ons. It i s  shown that any anisotropy i s  rapidly destroyed and for cosmic 

ray electrons which are more than about a million years old isotropy i s  to be 

expected. 



Introduction 

It  i s  well known that a relativistic charged particle moving in  a circle in 

a uniform magnetic field emits synchrotron radiation mainly in the plane perpendi- 

cular to the magnetic field direction. 

It i s  then of interest to consider the stability of a relativistic electron 

plasma, immersed in  a homogeneous magnetic field, to waves which propagate normal 

to the unperturbed magnetic field direction. 

We wi l l  consider the case where there also exists a thermal electron 

plasma embedded in the same magnetic field which i s  taken to be infinite in extent 

to avoid boundary effects. 

We suppose that there also exists an immobile, cold, proton background 

plasma sufficient to preserve space charge neutrality so that the system i s  stable 

against electrostatic disturbances. 

The question of electromagnetic stability of such a system i s  interesting 

since an unstable situation means that the relativistic electrons feed energy to the 

electromagnetic wave and consequently they become cool. On the other hand a 

stable situation means that the transverse wave is damped and thus the fast particles 

gain eiieigy. Thus the mecCYlnlcm may be either a cooling or a heating process 

for cosmic ray electrons and which i t  i s  w i l l  depend on the shape of the distribution 

function in momentum space. In this paper we propose to examine one particular 

type of distribution fdnction which has been ascribed to cosmic rays. We wi l l  allow 

the distribution function to possess one arbitrary pammeter, namely the degree of 

anisotropy, which can be varied in  order that either stability or instability i s  
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achieved. In the case of instability a discussion of  the minimum e-folding time 

for the wave is  given and a numerical estimate i s  made to decide i f  the process 

i s  physicially significant in the case of galactic cosmic ray electrons. 

2. The Dispersion Relation 

We choose a Cartesian coordinate system so that the embedded magnetic 

field, of strength 

be written 

/-lo , points along the direction of the x-axis and may 

-0 H = cl, 0, 0, 0 ) .  

The perturbation electromagnetic potential, p , which i s  of 
rvr 

infinitesimal amp1 itude qo , i s  chosen to be 

Associated with this potential are perturbation electric and magnetic 

fields given by 

and 

The relativistic Vlasov equation for a distribution function I= can be 

written 
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where M i s  the particle's rest mass, € i t s  charge, c i s  the 

velocity of light and Nr 17 , the normalized momentum, i s  given by 

M C C =  $. where 8 i s  the actual momentum. 

We linearize (3) by setting 

F= fo+f  

where subscript '0 ' means equilibrium values. The linearized Vlasov 

equation can then be written 

As i s  usual we have neglected any electrostatic electric field. 

Changing to cyiindricai morneniumi cooi-diiirtes d e f l ~ d  by 

so that 
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and making use of (1) and (2), we see that (4) can be written 

also assumed c . = o  as i s  reasonable in any physical situation. w 
It i s  easy to show that the solution to (5) i s  given by 

We must also satisfy the Maxwell' equation 

which can be written 

Substituting for (j7 from (6) and performing the integral over 8 , 

enables (7) to be written 
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y ,lJ = 1 7 ~ 4 ~  Transforming to spherical momentum coordinates defined by 11, -177rat 

we see that (8) can be written 

This can be re-arranged to give - 

Now it i s  well known that 

for a l l  values of A . Thus the third term on the left hand side of (10) can 

be written - 

On the right hand side of  (10) we see that we have a factor inside the double integral 

of the form 



r 

I 
I -  s = +  @-b) 

Upon multiplying each term of (11) by (?bJ/(S+b) 

7 ( x )  = 4 '( x ) 

and noting that 

we see that (1 1) becomes 

Using the results given in the appendix it can be shown that 

Thus we can simplify (10) to obtain -- 

We wi l l  refer to either (10) or (12) as the dispersion relation since they define the 

spread of k with C3 . Since we are looking for the temporal 

stability of the system we define k to be real and positive. The necessary 
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and sufficient condition for an unstable situation to exist i s  that the imaginary part 

of (12) vanish for some real positive d (Penrose, 1960). 

To find the imaginary part of (12) i t  i s  necessary to consider the position 

of the poles which occur in the 

occur in  the f l  integral whenever 

integral. I t  i s  easily seen that poles 

For GI real and positive it i s  obvious that the poles wi l l  l ie on the 

real n axis fora l l  ~3 '13~/d, . For S <  o/oL the poles 

l ie  on the imaginary fl axis. 

Writing 

we see that as from above, we must understand 

for a l l  s i/ vk where we have init iaiiy defined Lc? ts !Ie IT! 
J 

the upper half complex plane. For a thorough discussion of this point we refer the 

reader to Jackson (1958). 

Thus for c3 real and positive we see that (12) becomes 



If the equilibrium distribution function i s  isotropic in momentum space 

and monotonically decreasing with ;HCYEQS~;\ 

of (13) i s  always negative and consequently this situation i s  always stable. 

we see that the imaginary part 3 

We can also note that if only thermal particles are present so that we 

can replace the relativistic factor i(I+fl7) 
part of (13) i s  identically zero for all real  

would also be stable. In such a case for real d f  k wou Id 

change sign as w passed through f r3c and would become, say, 

positive infinite and negative infinite for W = 0 respective1 y. 

by unity then the imaginary 

~3 values and thus this situation 

Thus waves would either propagate or be heavily damped depending on 

which side of S k ) L  the frequency, k) , le% Hence only for 

relativistic particles i s  i t  possible to have an unstable situation. 

Let us therefore consider the case where an anisotropic relativistic 

electron plasma is  present and also a cold thermal electron plasma. We shall 

also assume that a cold background proton plasma i s  present which serves to satisfy 
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space charge neutmlity everywhere. 

3. The Equilibrium Distribution Function 

While there are many possible relativistic electron distributions which 

one can use in (12) we wish to choose one which has some probability of being 

realized in nature. From cosmic ray measurements an inverse power law spectrum 

seems to fit the data reasonably well, so for the relativistic electrons we choose 

Here i s  a fixed index and o( we call the degree of anisotropy. 

The step function s ( X )  i s  defined by 

It i s  clear that wi th  an inverse power law such a lower momentum cut- 

of f  i s  essential in  order to keep the number density, e ? of relativistic 

particles finite. Provided 8 i s  large enough (> 2) no upper 

momentum cut-off i s  required to keep the energy deiisity of zcsmk :cy e!ertrnns 

finite. 

The constant J i s  chosen so that 
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Let us further assume that, while the relativistic electrons provide the 

imaginary part of (13), the thermal particles have a much higher number density 

than the relativistic particles and hence provide the real part of (13). Thus it i s  

the relativistic particles which provide the energy exchange with the wave but it 

i s  the thermal particles which define the wavenumber at which this exchange occun. 

We treat the thermal particles as being completely cold so that their 

distribution function can be written 

where r\l 
(13) and evaluating the integrals we see that the real part can be written 

i s  the number density of  cold electrons. Substituting (16) into 

where the plasma frequency for cold particles i s  defined by 

In terms of the phase refractive index of the wave, ylr , we have 

Thus the usual condition for a propagating wave to exist, namely a>+ I 

i s  recovered in the l i m i t  of the cold electron approximation. 
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Let us now turn our attention to the imaginary part of (13). Writing 

where f"l and fd are real functions of the real variable 

we see that, since k' i s  real, we have 

and with $p given by (14) we must demand that M(d) = 0 for 

some real positive a i f  an unstable situation is  to develop. . 
Substituting for (14) in  (19) we see that 

' r l ,  i s  sufficiently large compared to unity so that J(/+fl:) 00 Assuming that 

and SuL >> we see that (20) becomes 

L 4L 
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no Since we know that mJ3.’ up and 

unity we can replace the sum over 

error. Writing S =  (v%)jt and letting e/,+ JL we see that (21) becomes 

i s  reasonably large compared to 

by an integral without appreciable S 

Now YL <1 and thus h5& y <L . Also since W +wp 

and R, 2 I we can use thecar l in i  approximation to the Bessel function 

so that 

Changing the order of integration in (24) we see that 



where 

If the x-integral i s  to converge it i s  clear that we require 

Since < - the smallest value of 9 occurs when sky,= - I 

and at this value we require 

Q >o . 

we Remembering that M‘ = /-&/gz and w> dp 

see that (27) i s  always obeyed. Thus the integral over X co nve rges. 

While the X integral cannot be performed exactly an estimate 

where r)) ~ oQ >> 1 . It i s  clear that for A>, uota-’ the 

integrand rapidly becomes very small compared with i t s  value at  n, 
So that to a reasonable degree of accuracy we can write 
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I .  

Making use of (28) in (25) we see that 

TA 

- 
where CL i s  given by (26). 

Changing variables in (29) through the relation 

we see that (29) can be written 

It i s  obvious by inspection that (30) possesses a sharp maximum in the 

----e ' " ' lyG 

steepest descents to evaluate the integra I .  

V L I  11.- n 2 1  I \ 1 < 2 / \ 1 - . Thus we can gainfully employ the method of 

The maximum occurs when 
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where r" i s  the power of (5 ?c, .I  - g''Z which occurs in the inte- 

grand of (30) and this result i s  approximately true provided 

I 

Then the method of steepest descents yields 

2 d(I- h ') < I 4  d(1-h') e 
where 

1-4 ( 1 - q  8 

I t  i s  clear that i f  O then Mu) i s  extremely small. 

Thus the situation which i s  of physical interest i s  the case where ylr ?Y 

In such a situation I L F) 1 < d L  so that we can write approximately 

It i s  clear from (34) that the imaginary part of the dispersion relation 

- - - - : - L e  rrnl,, if 4 Q . 
I vUIIIJllr.7 "I., 

we see that the Penrose criterion / w o >  Setting d = - 
i s  satisfied when 
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If this approximation i s  to be valid we require k'>O and W > A J  . I' 
r 

. F m  (35) we see that th; v c  u k s  t 

Also from (32) we must have 

(37) 

We wi l l  see later in the section on numerical estimates that (36) and (37) 

are extremely lax conditions on the permitted values of 

(w) further 

r 
With these restrictions we can approximate 

to obtain 

where $0 = and yo 'f t-)a /"p . 
C .  Since rne * I  wuvc .-..- : -~- -*k  I I I I G I ~ ~ ~ ~  tAt:+h ...... +he ..._ Fr t ic les  at multiples of  the cyclotron 

frequency we see that the interaction i s  mainly with the perpendicular momentum 

of the particles. Thus in the case where 

of  a l l  waves and as q consequence the energy associated with the wave increases 

the perpendicular pressure. Thus the plasma tends to isotropy. 

o( > 0 we have Landau duwp'hzf 

In the case where o( <o the perpendicular pressure i s  decreased 
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since the waves abstract more energy from the perpendicular component of 

motion than the parallel component. Since we init ially had a greater perpendicular 

pressure than parallel pressure we see that the plasma again tends to isotropy. 

4. Amplification Rates 

Under the approximation we have made it has been shown that an 

unstable situation can exist for d< 0 . We must now consider the 

e-folding time to see i f  the process can have physical significance. 

i ( k t  -ut) 
In general a disturbance of the form e when 

applied to the linearized equations yields a dispersion relation which can be 

put in the form 

a 

where 7 and K are real functions of the complex variable 

&d , and k' i s  positive definite. 

Writing = c +i 6 we see that 

Assuming -- a priori that s<< or we can expand (40) in a Taylor series. Thus 



-18- 

Since k' i s  meromorphic in W and $ we see from 

Cauchy's relations that 

Keeping only terms up to first order in (&/a,,) in (41) and 

using (42) we see that 

Now we have already evaluated K ( ~ , L I ) ( ~  N1d) ) and 

TT(u ,O) (Z  (Q'-L.$) c-' ) in order to satisfy the Penrose condition. Thus 

it i s  a simple matter to write down and upon so doing we find that 

From (44) it can easily be seen that 8 possesses a maximum 

and at the maximum Y=% close to 
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, 

8 

5. Numerical Estimates 

To obtain some idea of the numerical size of the instability in order to 

see i f  i t can be physically significant we apply the above calculation to the case 

of galactic cosmic ray electrons. 

The parameters required are 

(i) uo - this has been estimated to be about 5 lO-'f(Gardner 

and Davies, 1965). 

(ii) - the neutral hydrogen number density has been estimated 

-3 
to be - 1 cm 

-2 -3 1963) thusgiving 1\1 - 2 -  10 cm . 
of which perhaps 2% i s  ionized (Westerhout, 1957; Wilson, 

I 

(iii) )( - from observations of cosmic ray protons this has a 

ectrons possess a value of about 2.5 . If we assume that the cosmic my e 

similar spectrum, they also have 2.5 . 
(iv) - for cosmic rayprotons this has &+ d u e  

1 n t o  .̂ i 1.5. Since we require n,'>>i for the calculation to be 

valid we wi l l  assume n, IV 5 for the fast electrons. 

(v) r -. the energy density of cosmic my protons gives 

-12 -3 I 
where 10 ergs cm and the suffix (7 stands for 
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protons. If we assume that there i s  equipartition of energy between the cosmic ray 

protons and electrons then 

Fmploying the above parameters in  (45) we see that 

5 0  ~ ~ ; ~ - ~ o o  ; Po I t  i s  clear from (46) that as 

so that the closer the plasma i s  to isotropy the longer it takes for the wave to abstract 

energy from the plasma. 

It i s  well known that the observed cosmic my protons are isotropic 

of i s  certainly well below e leads to an e-folding time of 

r to better than 1% (Greisen, 1956) so that a 

this observational upper l imit.  This value of 

In increasing i t s  energy by a factor of 5 or so in this time the wave 

has drawn mainly on the perpendicular component of motion of the relativistic plasma. 

Then the fast electrons become more nearly isotropic. For example if we assume 

that cosmic ray electrons are at least 10 

that isotropization wi l l  be very nearly complete with this 

8 
years old on the average, then we expect 

value. 
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One c the main drawbacks of a linearized calculation i s  that no 

account of the energy loss of the fast particles i s  given. Thus we do not know whether 

the relativistic electrons lose so much energy during isotropization that they cease 

to be relativistic, or whether the total particle energy loss i s  so small i t can be 

neglected. 

We wish to point out that the important consequence of instability 

i s  that the plasma rapidly becomes isotropic if the anisotropy i s  reasonably large. 

With the parameter given we see that the conditions which we must 

satisfy, namely 

become 

With 

sequently the approximate formulae for N(k)) and 8 are valid. 

max’ 

i: ,” 10 - ii i s  claai k t  b t t :  of these conditions are met and con- 

Associated with the most unstable wave are a frequency, f 

-4 
and a wavelength, max, which, for f = 10 , aregiven by 
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and 

Thus the instability occurs on a very small scale compared with 

the size of the galaxy. 

6. Conclusion 

Using a simple relativistic electron momentum distribution function, 

in  conjunction with a cold electron background, we have shown that the system 

i s  unstable against waves propagating perpendicular to the embedded magnetic 

field provided only that the perpendicular cosmic ray electron pressure i s  in excess 

of the parallel cosmic ray electron pressure. 

Assuming numerical parameters which are representative of the 

values expected in the galaxy, we find that the instability i s  sufficiently rapid to 

produce isotropy of the distribution function in a very short time compared to the 

8 
age of the cosmic ray electrons. For example, with an age of 10 years and an 

-4 -5 
anisotropy of 10 we find an e-folding time which i s  only - 10 of the age. 

For higher degrees of anisotropy the isotropization of the relativistic electrons pro- 

ceeds even more rapidiy. 

We conclude that this process i s  an extremely powerful one for 

producing isotropy of the relativistic cosmic ray electrons. 

We further note that the instability occurs only when relativistic 

particles are present and arises because a fast particle's mass differs from i t s  

rest mass. 
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Appendix 

Let 

It can be shown (Watson, 1952) that for a l l  /"2 and 9 such that 

kk (p.9) >-I we can write 

Substituting for (A3) in (Al)  gives 

J d  

It can easily beshown that 

b 
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. 

Making use of (A5) in (A4) we see that 

Upon using (A2) in the above equation we see that 

which is the required result. 

. 

1 
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Figure Caption 

Penrose criterion for instability for varying degrees of anisotropy. 
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